Digital Signatures Based on the Hardness of Ideal Lattice Problems in All Rings
نویسنده
چکیده
Many practical lattice-based schemes are built upon the Ring-SIS or Ring-LWE problems, which are problems that are based on the presumed difficulty of finding low-weight solutions to linear equations over polynomial rings Zq[x]/〈f〉. Our belief in the asymptotic computational hardness of these problems rests in part on the fact that there are reduction showing that solving them is as hard as finding short vectors in all lattices that correspond to ideals of the polynomial ring Z[x]/〈f〉. These reductions, however, do not give us an indication as to the effect that the polynomial f , which defines the ring, has on the average-case or worst-case problems. As of today, there haven’t been any weaknesses found in Ring-SIS or Ring-LWE problems when one uses an f which leads to a meaningful worst-case to average-case reduction, but there have been some recent algorithms for related problems that heavily use the algebraic structures of the underlying rings. It is thus conceivable that some rings could give rise to more difficult instances of Ring-SIS and Ring-LWE than other rings. A more ideal scenario would therefore be if there would be an average-case problem, allowing for efficient cryptographic constructions, that is based on the hardness of finding short vectors in ideals of Z[x]/〈f〉 for every f . In this work, we show that the above may actually be possible. We construct a digital signature scheme based (in the random oracle model) on a simple adaptation of the Ring-SIS problem which is as hard to break as worst-case problems in every f whose degree is bounded by the parameters of the scheme. Up to constant factors, our scheme is as efficient as the highly practical schemes that work over the ring Z[x]/〈x + 1〉.
منابع مشابه
Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures
We demonstrate how the framework that is used for creating efficient number-theoretic ID and signature schemes can be transferred into the setting of lattices. This results in constructions of the most efficient to-date identification and signature schemes with security based on the worst-case hardness of problems in ideal lattices. In particular, our ID scheme has communication complexity of a...
متن کاملA New Ring-Based SPHF and PAKE Protocol On Ideal Lattices
emph{ Smooth Projective Hash Functions } ( SPHFs ) as a specific pattern of zero knowledge proof system are fundamental tools to build many efficient cryptographic schemes and protocols. As an application of SPHFs, emph { Password - Based Authenticated Key Exchange } ( PAKE ) protocol is well-studied area in the last few years. In 2009, Katz and Vaikuntanathan described the first lattice-based ...
متن کاملWorst-case to average-case reductions for module lattices
Most lattice-based cryptographic schemes are built upon the assumed hardness of the Short Integer Solution (SIS) and Learning With Errors (LWE) problems. Their efficiencies can be drastically improved by switching the hardness assumptions to the more compact Ring-SIS and RingLWE problems. However, this change of hardness assumptions comes along with a possible security weakening: SIS and LWE ar...
متن کاملCreating a Challenge for Ideal Lattices
Lattice-based cryptography is one of the candidates in the area of post-quantum cryptography. Cryptographic schemes with security reductions to hard lattice problems (like the Shortest Vector Problem SVP) offer an alternative to recent number theory-based schemes. In order to guarantee asymptotic efficiency, most lattice-based schemes are instantiated using polynomial rings over integers. These...
متن کاملPolynomial Time Reduction from Approximate Shortest Vector Problem to Principal Ideal Problem for Lattices in Some Cyclotomic Rings
Many cryptographic schemes have been established based on the hardness of lattice problems. For the asymptotic efficiency, ideal lattices in the ring of cyclotomic integers are suggested to be used in most such schemes. On the other hand in computational algebraic number theory one of the main problem is the principal ideal problem (PIP). Its goal is to find a generator of any principal ideal i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016